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Abstract

By design of the external and internal wave–current generators, the objective of this paper is to extend our efficient
Navier–Stokes solver [T. Li, P. Troch, J. De Rouck, Wave overtopping over a sea dike, J. Comput. Phys. 198 (2004)
686–726] for modelling of interactions between breaking waves and a current over a cut-cell grid, based on a dynamic sub-
grid-scale (SGS) model. This solver is constructed by a novel VOF finite volume approach, coupled with surface tension.
When studying waves following a positive current, our external generator creates the combined inflow motions of waves
and a current, which is viewed as one type of wavy inflow conditions. For cases of waves against strong currents, our inter-
nal generator describes the opposing current, by incorporating the source function to the continuity and momentum equa-
tions as a net driving force, acting on the fluid elements lying within the finite thickness source region. The outgoing waves
downstream are dissipated with a breaking-type wave absorber placed in the tank extremity. Five test cases recommended
are of distinctly different applications of interest, characterized by overtopping of following waves over sloping and vertical
structures.

Under the grid refinement effects, the results in 2D and 3D are in close agreement with the experimental data available
in terms of the surface wave. Additionally, the performance of convergence in computations is also investigated, including
full discussion for waves on beaches between 2D and 3D. By visualization of the motions that describe the physics of tur-
bulence, it has been shown that our solver can capture most of the significant features in wave–current interactions varying
with three different current speeds (positive, zero, negative).
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Surface wave propagation in water of varying depth is of particular interest in the study of nonlinear wave-
wave interactions and breaking wave-induced motions, especially coupling of steep waves with a structure.
For the latter, the major physical processes involved are extremely complex, characterized by reflection, shoal-
ing, diffraction and breaking, until waves overtop. Based on fluid mechanics of turbulence in waves, the
dynamics of these transformations can be considered as small-scale turbulence, larger-scale coherent vortical
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motions, low-frequency waves and steady flows [2]. This subject itself, therefore, is one of the challenging top-
ics in research and engineering. Importantly, the additional effects of a current substantially aggravate the sit-
uation that may change the coastal environments. Typically, the wave-induced currents alter the nearshore
transport of sand and contaminants at the seabed, as the mechanism of sediment movement is closely related
with pickup by wave action and transport by currents. Moreover, the combination of extreme wave and cur-
rent conditions is also used to establish the design loads for large offshore structures.

The relevant study mainly involves computational modelling of moving boundary problems associated with
an air–water interface (referred to as the free surface), separating the two segregated fluids. There are many
ways available in theory for solution of this particular problem, which basically may be classified into two
types of categories: one- and two-phase fluid model. In the case of the former, the free surface is assigned
as one of boundaries, and a necessity is to specify boundary conditions at this surface before driving impul-
sively from rest; but conversely for the latter the free surface is viewed as a material interface of a contact dis-
continuity in variable density fields, captured naturally without special provision as part of the solution.
Definitely, both methods are of their essential features. Given the exact location of interface at transient state,
for example, a high order of accuracy is easily preserved with gravity-dominated one-phase solver [32], as in
this case a non-smeared interface can be materialized. Additionally, computations are less expensive than a
two-phase model, which needs the considerable CPU time, because of the extra air domain involved. Never-
theless, it indeed offers the potential to situations where an air bubble is trapped in the ambient water [25,38]
and can well describe the behavior of the water–air mixture. Owing to the strong interface deformation and air
entrainment phenomenon involved, the question raised here is relevant to numerical diffusion, primarily
caused by handling a sharp jump of the density over a narrow band relying on the fact: the density and vis-
cosity at a transitional layer between the two fluids vary appreciably across the interface. If such dissipation
accumulates with time, this behavior could induce an impact on the accuracy and stability. Consequently, for
high density ratio cases convergence may be slow, and the modelling of surface tension may lead to accuracy
problems [36].

An earlier approach is based on the linear boundary layer approximation [20], when studying energy trans-
fer between waves and a current. Until recently, the most popular one is to introduce the radiation stress con-
cept [37], for instance, as the basis of the famous SWAN solver [4]. Within the framework of this technique,
the wave motions are distinguished and are in fact separated from the current motions. An alternative is to
account for surface-piercing numerical wavemakers for forcing surface waves. The emphasis is on modelling
of external or internal wavemakers plus a current, by prescribing inflow conditions or adding a net driving
force. This provides a convenient framework point for investigation of wave–current interactions in a consis-
tent manner. More specifically, solution of the Navier–Stokes equations can directly give the current state and
describe the wave pattern simultaneously. Importantly, distinction between waves and currents is unnecessary
in this theory, as done in Park et al. [43]. It is one of the very few Navier–Stokes simulations even in the case of
non-breaking waves. For situations where the positive (or negative) currents vary gradually in space and time,
a key point in computations is that mass conservation has to be held over a long duration simulation, as waves
develop rapidly in both scales. Accordingly, the numerical schemes proposed would identify the basic mechan-
ical design feature. To avoid waves reflected in the near-inlet regions, one suggestion is to discretize a kind of
Orlanski condition on a grid for the velocity and total wave profiles [30] or to apply for the internal wave-
maker [35]. In view of the computational issues mentioned above, therefore, a numerical wavemaker has ben-
efited greatly, especially it substantially differs from the radiation stress approaches.

In this paper, we mainly emphasize the design of an external and internal generator for wave–current cou-
pling, by using a dynamic Smagorinsky model. Theoretically, an external generator can be viewed as one type
of inflow conditions into the major computational domain [1,48], which perturbs flows through the boundary
rather than the interior. It is a major difference with an internal generator, in which a net driving force is added
to the source term of the governing equations for creation of the desirable adverse current. Both numerical
generators provide an efficient tool for the study of coupling of breaking waves with a current over a sloping
and vertical structure both in 2D and 3D, as addressed in waves following or opposing a current (mostly for
the former). This considerably extends our previous study [30], in which only a pure wave in 2D is investigated
with our developed Navier–Stokes solver, coupled to a static Smagorinsky model. The outgoing waves down-
stream are dissipated with the breaking-type wave absorber placed in the tank extremity.



Table 1
The wave and current characteristics for Case 1 to Case 5: the wave height H, the period Ta, the water depth d and a current speed Uc

Test cases Uc (ms�1) d (m) H (m) Ta (s)

Case 1 (WCA4): Kemp & Simons (UK) �0.11, 0.0, 0.11 0.2 0.0394 1.0
Case 2: Klopman (Netherlands) �0.16, 0.0, 0.16 0.5 0.12 1.44
Case 3 (WC1): Fredsøe et al. (Denmark) �0.222, 0.0, 0.222 0.45 0.13 2.5
Case 4: a vertical wall problem 0.0, 0.10 0.7 0.16 2.0
Case 5: a seadike problem 0.0, 0.17 0.7 0.16 2.0
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Five test cases without the exact solution are applied in this study, some of which are related to different
applications in coastal and harbour engineering. Three cases first recommended involve the modelling of fol-
lowing (or opposing) waves with various wave characteristics (see Table 1) in the open channel flow over con-
stant water depth, due to measurements available in the literature. In all test cases, particular interest is paid to
the near-boundary free-surface turbulent region, especially when validated our design wave–current genera-
tors. The last two cases are characteristic of waves breaking in water of varying and constant depth, respec-
tively, where steep waves overtop over the sea dike and vertical wall. Our results demonstrate that most of
typical features in the wave-induced motions are captured with our solver in the presence of a current or
not. Comparisons with the experimental data are also rather satisfactory in terms of the mean surface and
horizontal velocity profiles, including prediction of the long-term propagation behavior of waves.

The outline of the present study is as follows. We first describe our numerical methods, e.g. by introducing a
dynamic SGS model for the study of breaking water-wave problems, with particular emphasis on design of the
wave–current generator plus the wave absorber. A comparison of the calculated results in 2D and 3D with the
experimental data is represented next, followed by the concluding remarks.

2. Methodology

2.1. A MILES model

On the assumption that waves are travelling on a current in a numerical wave tank (NWT) that is of a rel-
atively long flume (see Fig. 1), the plane of z = 0 corresponds to the mean water level in the Cartesian coor-
dinate (x,y,z) system, where x is in the direction of the wave propagation, while (y,z) are toward the lateral
direction and positive upwards, respectively. Based on MILES, the mathematical model in this study is gov-
erned by the unsteady incompressible Navier–Stokes (NS) equations, as the concept of MILES (monotoni-
cally integrated large-eddy simulation) attempts to resolve accurately the NS equations. Namely
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where the variables u = (0, u,v,w,a)T, in which (u,v,w) are the components of the velocity in the x-, y- and
z-directions, respectively, and a is the volume fractions in VOF (volume-of-fluid). By defining the inviscid
fluxes (Fi,Gi,Hi), the viscous fluxes (Fv,Gv,Hv) and the other fluxes (Fa,Ga,Ha), we have
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Definition sketch of the NWT for waves following or opposing a current. (a) 3D; (b) 2D (on the symmetry plane, y = 0), where the
is upstream.
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where g is the gravitational acceleration and f is the internal source function (see Eq. (50)) for creation of an
adverse current. (F x

b; F
y
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bÞ and (F x
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z
dÞ are three components of a body force ~F b [30] and an extra dis-

sipative term ~F d (see Eq. (52)) in the (x,y,z)-directions, respectively. For the latter, it is active on a limited
portion of regions (i.e. the so-called numerical damping zone, see Fig. 7) adjacent to the artificial boundary.
For restricted domain simulations, this provides an alternative for dissipating energy of waves in numerical
models. p is the modified pressure that considers the effect of the subgrid kinetic energy k (from the trace
of sij) by setting p ¼ P þ 2

3
k, in which P is the total pressure.

With the Einstein summation convention (such as sxx = s11), the viscous stress tensors sij (i, j = 1,2,3) may
be evaluated by
sij ¼ m
oui

oxj
þ ouj

oxi
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ð6Þ
with the molecular viscosity m (a constant of 1.3 · 10�4 m2 s�1). The local density q and the viscosity m are lin-
early connected with the scalar value a
q ¼ aqw þ ð1� aÞqa; m ¼ amw þ ð1� aÞma; ð7Þ

where the subscripts (w,a) denote the water and air, respectively.
2.2. Solution procedures

Applying Gauss’s divergence theorem to Eq. (1), this yields the integral form as
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for the surface S surrounding the domain of interest V. Accordingly, the discretization at the (n + 1)th time
level is driven by
ounþ1

ot
¼ � 1

V

X
faces

bFnþ1S þ Qnþ1 ð9Þ
over each cell of a hexahedron.
P

represents the summation of all cell faces on a grid, and bF includes the
inviscid, viscous and other fluxes via
bF ¼ F � �n ¼ ðF i � F v þ F aÞnx þ ðGi � Gv þ GaÞny þ ðH i � H v þ H aÞnz ð10Þ

with unit normal surface vector �n, where (nx,ny,nz) are its three normal components outwards in the x-, y- and
z-directions, respectively. (Fi,Fv,Fa) to (Hi,Hv,Ha) are the fluxes defined by Eqs. (2)–(4).

By introducing the delta form du = un+1 � un for the velocity, the fluxes bFnþ1 in Eq. (9) can be linearized
locally with respect to time t, when dropping the high-order terms. Namely
bFnþ1 ¼ bFn þ obF
ou

du ð11Þ
only for the convective and diffusion terms, resulting in Eq. (9) to be factored into the three one-dimensional
equations as follows:
� Ai�1du��i�1 þ Að1Þp du�� � Aiþ1du��iþ1 ¼ DtR;

� Aj�1du�j�1 þ Að2Þp du� � Ajþ1du�jþ1 ¼ du��;

� Ak�1duk�1 þ Að3Þp du� Akþ1dukþ1 ¼ du�;

ð12Þ
based on the alternating direction implicit (ADI) approximate factorization with a local time step Dt. The sub-
scripts (i ± 1, j ± 1,k ± 1) represent two adjacent neighbours of cell (i), respectively, and the coefficients
(Ai±1,Aj±1,Ak±1) typically involve a blend of the inviscid and viscous volumetric fluxes. R in Eq. (12) is the
residual of the momentum equations defined as
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with F i ¼ F inx þ Giny þ H inz and F v ¼ F vnx þ Gvny þ H vnz, where the source terms Qn+1 = Qn = (0,0,0,�g)T,
indicating that the body force ~F b, the dissipative term ~F d, the source function f(x,y,z, t) and the other fluxes
are retained in the explicit formulation during the implicit process.

When the contribution of the dissipative component F x
d and the source function f is incorporated into the

temporal velocity ũ (for example, for the momentum equations in the x-direction)
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this results in the Poisson equation for the pressure as
r � rpnþ1
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fr �~~u� f g ð15Þ
according to the projection algorithm. In our implicit stage, the convective fluxes F n
i (see Eq. (13)) at the nth

time step are calculated by means of the flux-difference splitting approach, yielding the fluxes F n
i at the face
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Under the finite volume approximation, two typical variables (un,uL) are separately treated for maintaining
the second-order spatial accuracy, including enhancement of the numerical stability. First, the normal face
velocity un (defined by un = unx + vny + wnz) is directly modified by our design combination of the second-
and fourth-order artificial damping terms. Namely



870 T. Li et al. / Journal of Computational Physics 223 (2007) 865–897
ðunÞiþ1
2
¼ 1

2
unð Þi þ unð Þiþ1

� 	
� 1

2qw2c2

pR
iþ1

2
� pL

iþ1
2

� �
1
� 1

2qw4c4

pR
iþ1

2
� pL

iþ1
2

� �
3


 �
: ð17Þ
As expected, this correction helps to damp high frequency oscillations, since for problems of the convective
domination the linear interpolation of the face value results in an unbounded solution. Secondly, the relevant
face values (such as the left state uL) are estimated with the characteristic variables at adjacent cells, by incor-
porating the second-order essentially non-oscillatory (ENO) scheme for uL
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in smooth regions. Based on Taylor series, the different leading-order truncation errors (1
8
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ox2 Dx2, 3
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obtained, dependent on the upwinding of the stencils. For Eq. (17), our damping terms with regard to the pres-
sure can be expressed by
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where the scaling factor c4 (c2 = 1 in this case) is determined by the three mainly diagonal coefficients
(Að1Þp ;Að2Þp ;Að3Þp ) of Eq. (12), which is formulated according to [30], in case the second- and fourth-order coef-
ficients (w2,w4) are given adaptively with the local diffusion velocity. Both schemes can be considered as
one type of shock-capturing schemes [16], which provide a particular form of the functional reconstruction
for the convective fluxes: by using TVD (total variation diminishing)-based schemes as flux limiters that are
implicitly implemented SGS models. Definitely, such features essentially construct one type of MILES for
the spatial discretization of the convective terms. Hopefully, the scheme rendered prevents unphysical oscilla-
tions in computations.

More importantly, a hybrid approach constructed by the weighted upwind scheme and blending algorithm
is devised for high resolution of a step profile of a in VOF, as opposed to geometrical strategies. It is a simple
but effective algorithm in multidimensional directions, characterized by the interfaces that are arbitrarily ori-
entated with respect to the computational grids. To achieve higher-order accuracy, for example, the volume
fractions ai þ 1

2

n
in VOF are updated by adding the second-order correction that accounts for the flux limiting
an
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implying that a bounded solution can be guaranteed during tracking. In particular, the high-resolution mono-
tone scheme for ai þ 1

2

L
may adjust amount of the numerical diffusion induced by the low-order scheme (this

feature is also suitable to Eq. (17), as done in the flux-corrected transport algorithms, by introduction of a
flux-limiter C. For the fully implicit cell-staggered finite volume (FV) method on non-uniform stationary
cut-cell grids, we refer the reader to our study [30,33] for considerable detail of this procedure. The following
is to describe a dynamic subgrid-scale (SGS) model, because MILES coupled to such model can give a better
accuracy for particular periodic breaking water-wave propagation problems, as guided by the results of
Appendix A (e.g. Figs. 25 and 26).
2.3. A dynamic Smagorinsky’s model

In the conventional LES (large-eddy simulation), the SGS stress bij caused by nonlinear terms uiuj is
expressed as
bij ¼ uiuj � uiuj ð21Þ
in case a low-pass filter is applied to the NS equations. The overbar represents the spatially filtered quantities
at a characteristic length scale of the small eddies D, based on the predefined filter kernel (e.g. a top-hat shaped
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kernel). In the present study, we address the issue of modeling the total stress term (i.e. a purely dissipative
term). On the assumption that the SGS stress is restricted to eddy-viscosity branch of a family, theoretically,
it may be cast into the constitutive relation as follows:
bij �
1

3
dijbkk ¼ �2mTSij with Sij ¼

1

2

oui

oxj
þ ouj

oxi

� �
; ð22Þ
where dij and Sij are the Kronecker delta function and the resolved-scale strain rate tensor, respectively. Phys-
ically, the major role of the SGS model is to remove energy from the resolved scales. In this sense, Eq. (6) can
be rewritten as
sij ¼ meff
oui

oxj
þ ouj

oxi

� �
ð23Þ
as the isotropic part of the SGS stresses (1
3
dijbkk) has been absorbed to the pressure term. An essential point in

our MILES, now, is to evaluate the effective viscous coefficient meff, assigned with meff = m + mT, by introducing
a dynamic Smagorinsky’s model (DSM) that captures the averaged motions without elaborate numerical
computation.

Owing to the simplicity, a Smagorinsky-type isotropic eddy-viscosity model remains in wide use [28], as
small scales tend to be more isotropic than the large-scale fluctuations, which are simulated directly. Theoret-
ically, the DSM model eliminates the uncertainty in a static Smagorinsky model (SSM) [50], especially helps to
correlate with varying in different regions of the flow (see Fig. 17 for the eddy viscosity contours). An attrac-
tive benefit is to avoid the free-surface boundary conditions specified, as the satisfactory conditions is usually
lack for the turbulent variables involved, for example, by using a k–� turbulence model. Consequently, a sim-
ple DSM is coupled to our shock-capturing scheme as the blending algorithm: MILES + SGS. Hopefully, it
becomes a promising LES approach for modelling of breaking water-wave propagation problems. One way is
capable of capturing the inherently anisotropic small-scale flow features, as in MILES implicit SGS models
provide an additional damping, caused by nonlinear high-frequency filters built-in the convection
discretization.

Within the framework of the eddy-viscosity technique, the introduction of the DSM is adaptively
to estimate the adjustable dimensionless parameter Cs, related with the unknown eddy viscosity mT.
Namely
mT ¼ CsðDÞ2jSj; ð24Þ

where jSj is the Frobenius norm of the strain tensor rate Sij, setting by jSj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

q
. In this case, it is

evaluated with the magnitude of the vorticity vector by definition of jSj ¼ jr � ~V j, where r ¼ o
ox ;

o
oy ;

o
oz

� �
and ~V ¼ u~iþ v~jþ w~k. Additionally, the constraint Cs = max(Cs, 0) is artificially enforced whenever Cs returns
negative values, implying that no mechanism for backscatter is allowed, as done in Smagorinsky’s constant
model [30]. It is absolutely dissipative in computations, probably guaranteeing numerical stability.

Based on the multiple filtering operators [17], the subtest-scale stress tensor similar to Eq. (21) also holds by
T ij ¼guiuj � euieuj ð25Þ
provided that the test filter eD (denoted by a tilde) is introduced and used in fact as the second filter to the NS

equations. For situations involving the same shape in the filter kernel as the grid filter D, the filter width of eD is
typically a function of D. Owing to the scale-similarity in the algebraic identity, the resolved turbulent stresses
Dij are obtained by
Dij ¼ T ij � ebijðguiuj � euieujÞ � ðguiuj �guiujÞ ¼guiuj � euieuj; ð26Þ

which removes the problem in estimate of the quantity guiuj . Under a refined discrete filter given (see Eq. (34),
Dij can be exactly evaluated with the resolved scales, as it physically represents the contribution of the smallest
resolved length scales to the Reynolds stresses.

On the other hand, the anisotropic subgrid-scale stresses bij and subtest-scale ones Tij are formulated by,
respectively,
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Substituting Eq. (27) into Eq. (26), this yields
Dij ¼ �2CsðDÞ2 ðeD=DÞ2jeS jeSij � gjSjS ij

n o
: ð28Þ
To achieve more stable values of Cs, Eq. (28) is replaced with a least-square manner that accounts for the ef-
fects of all the components [29]. This ensures the error E to be minimal
E ¼ ðDij þ 2CsðDÞ2P ijÞ2 ð29Þ

by forcing oE

oðCsðDÞ2Þ
¼ 0. Thus, we have
CsðDÞ2 ¼ �
hDijP iji�

2hP ijP iji�
ð30Þ
with Pij defined by
P ij ¼ ðeD=DÞ2jeS jeS ij � gjSjSij; ð31Þ

where the variation of Cs on the scale of the test filter width eD is ignored. Because of the filter-grid ratio
c ¼ eD=D ¼ 2 (usually and more smooth than c = 4, as shown in Fig. 2), the estimate of Pij is not necessary

to define the values eD and D, respectively. This feature is useful in some cases, as the flow structure near a
wall seems very anisotropic, leading to the definition of the length scale for anisotropic grids or filters unclear
[11].

The sign Æ æ* stands for the averaging operation over the homogeneous directions, which is introduced addi-
tionally, for example, by using the following trapezoidal filter:
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Eq. (32) implies that averaging in the wall-normal direction (i.e. along the y-axis) is performed over eight
neighboring grid points surrounding its center (i, j,k), which avoids very small denominators or negative
numerator values. One problem is in the near-wall regions, where turbulent flows are characterized by much
less universal properties. Owing to some mathematical inconsistencies with the formulation of filtering oper-
ation, it appears that Eq. (30) is not applicable to general geometries, as Cs is actually a function of time and
position [18]. For the present water-wave propagation problems involved, however, we focus attention on the
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capture of high turbulence that dominates over the wave-induced motions, generated in waves breaking. In
this sense, such problem associated with the breaking waves may be thought of as a kind of isotropic decaying
turbulence, due to without the fluctuation of walls (if assuming that far from walls the SGS flow is ideally
considered homogeneous isotropic). For this reason, the dynamic model can remove the mathematical incon-
sistencies, i.e. Cs can depend only on time (see Fig. 2) during averaging, as conducted with Eq. (32). With pos-
sibilities of simultaneously handling flow and grid anisotropies, on the other hand, our MILES may give a
better approach for inhomogeneous turbulent flows near the free-surface (or solid walls), because of the aniso-
tropic features of the SGS modeling in MILES [15].

To ensure smooth Cs, three times in cycle seem enough, based on our experience. When evaluating Pij (see
Eq. (31) with inclusion of the vorticity components, a favourable choice is with high-order numerical methods,
for example, by using a fourth-order central-difference approximation in smooth regions. In this way, the first-
order derivative, ðou

ox Þi in the ith direction (where ui denotes a variable on the grid, and Dx is the grid size in the
relevant direction) is given by
ou
ox

� �
i

¼ �uiþ2 þ 8uiþ1 � 8ui�1 þ ui�2

12Dx
; ð33Þ
while a central-difference scheme is employed in the near-wall regions and adjacent to the free surface. To re-
move the high spatial frequencies, moreover, we utilize a seven-point discrete test filter with trapezoidal rule
integration [51] for estimate of a filtered variable on the grid eu (see Eq. (26), i.e.
ðeuÞi ¼ 1

64
fui�3 � 6ðui�2 þ uiþ2Þ þ 15ðui�1 þ uiþ1Þ þ uiþ3 þ 44uig ð34Þ
in smooth regions but weights for symmetric filter with three- or five-point vanishing moments elsewhere.
The filtering is performed over regions of a sequence of one-dimensional filter for 2D or 3D problems. It
can eliminate the highest wavenumber that could be sustained by the grid [40], as the function becomes
zero at the grid cutoff in spectral space, despite the absence of the inconsistency in the effective filter width
for Eq. (34). Note that we do not introduce a weighting function that accounts for the non-uniform grid
spacing effects, as done in our ship flow studies for filtering the wave height over a stretched grid
[32].

Based on the DSM, a smooth function of Cs varying with time is given, as illustrated in Fig. 2, where
the shape of Cs forms a more regular step function, when c = 2. By comparison, the DSM produces the
better and less physical dissipation behavior for the free-surface profiles, as in our study Smagorinsky’s
coefficient is constant (Cs = 0.01), according to the SSM. Interestingly, the computations are not much sen-
sitive to the filter-grid ratio c (although c = 2 looks better), especially a large variation on Cs does not
have too much of a bearing on the results. One reason for that is there exists no net effect of the SGS
model due to mT = 0, in case the derivative of the velocity (ou

oz) is small, where Cs may be huge. The relevant
studies in the literature are given with [39,45,52], including two new SGS models, a dynamic free-surface
function model (DFFM) and a dynamic anisotropic selective model (DASM), proposed by Shen and Yue
[49].

2.4. Initial and boundary conditions

2.4.1. Initial conditions

At t = 0, all simulations start from a state of rest in quiescent water via (u,v,w) = 0 plus the hydrostatic
pressure distribution in the entire computational domain. After that, the accelerator in fluid fixed at the inflow
boundary will vertically oscillate the static water, and as a result of forcing surface waves propagating towards
the positive x-direction.

According to a flat free-surface at t = 0, the volume fractions a in VOF are initially assigned by
a ¼
1 in the full fluid;
gþd�zk�1

Dzk
over mixed cell;

0 in the air;

8><>: ð35Þ
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where g is the surface elevation (setup and setdown) with respect to the still water line, Dz is the vertical grid
size and the index k represents the mixed cell pointing to the free surface.

2.4.2. Boundary conditions
On the assumption that the free surface only supports the normal stress of a constant surface tension, the

more accurate normal free-surface boundary condition for the pressure (despite the absence of wind) is
expressed by
p ¼ qmeff 2
ow
oz
� og

ox
ou
oz
þ ow

ox

� �
� og

oy
ov
oz
þ ow

oy

� �
 �
ð36Þ
as in our solver surface tension has been handled with a body force. Of course, Eq. (36) has been used for the
study of turbulent free-surface flows in 3D modern ships [32], which is referred to as the Reynolds stress free-
surface boundary condition. It essentially represents the normal force only acting on the free surface under the
pressure surrounding air. A major benefit is that such boundary condition offers the potential for the capture
of the (thin) free-surface wave boundary layer, especially in waves breaking.

At the seabed, the free slip conditions are enforced and the no-flux condition is used on a cut cell (defined
by a cell partially dry) that is utilized for handling an arbitrary geometry, while the no-slip conditions are
implemented in the lateral direction. Additionally, a kind of Orlanski linear open boundary condition is
employed at the outflow boundary
ou
ot
þ ðC þ U cÞ

ou
ox
¼ 0; ð37Þ
where u = (u,v,w,a,p). C is the phase velocity of the long wave and its upper limit value is set by C ¼
ffiffiffiffiffiffi
gd
p

in
water of finite depth d. Theoretically, Eq. (37) simulates the propagation of velocity waves out of the compu-
tational domain. Unfortunately, the energy of waves is reflected there (see Fig. 9), implying that the use of
such condition is not expected with high absorption efficiency (probably, due to approximation of the phase
velocity). By comparison, an alternative is to introduce the physical wave absorber device for a tank, which
would be given, following the explanation of our design wave–current generator as inflow conditions.

2.5. An external wave–current generator

By superimposing a steady current onto waves, the combined motions on the inflow boundary are easily
obtained with the linear wave theory, which turns out to give a substantial solution (i.e. inflow conditions)
in regions of irrotational flow, as the nonlinear features of the free surface can be captured in the interior
of the fluid. In the context of this theory, the reflected wave elevation gf at the inlet can be estimated with
the incident wave elevation gi specified via
gf ¼ gt � gi ð38Þ

provided that the total wave elevation gt is generated. The subscripts (t, f, i) represent the total, reflected and
incident waves, respectively. Since we concern the steady vertically-uniform current speed Uc [44], the reflected
waves gf can be satisfied the modified Orlanski’s theory [42]. This yields
ogf

ot
� ðCx þ U cÞ

ogf

ox
¼ 0: ð39Þ
Substituting Eq. (38) into Eq. (39), the resulting wave surface is given by
ogt

ot
� Cx þ U cð Þ ogt

ox
¼ ogi

ot
� Cx þ U cð Þ ogi

ox
ð40Þ
indicating that the net waves relative to the weak disturbance of the reflected waves are created at the inflow
boundary. Substantially, the final result can be considered as the addition of driving force similar to the con-
tribution under the gravity acceleration. Mathematically, it is constructed as the 1D hyperbolic wave equation
for the total wave gt. Cx in Eq. (40) is the component of the group celerity in the x direction, and for any wave
propagation its derivation is always as follows:
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Cx ¼
oxr

ok
¼ 1

2k
1þ 2kd

sinh 2kdð Þ


 �
xr; ð41Þ
subject to the intrinsic angular frequency xr (the zeroth order approximation) and the wavenumber k defined
by
x2
r ¼ gk tanhfkdg and k ¼ 2p

k
; ð42Þ
where the wavelength k is precomputed from Eq. (49) below.
When solving this type of initial value problems, applying the second-order explicit Adams–Bashforth for-

mulation yields
gnþ1
t ¼ gn

t þ DtRn þ Dt
2
ðRn � Rn�1Þ ð43Þ
with an adaptive time step Dt, that accounts for the variation of the subgrid spacing plus the flow in the inte-
rior of domain, and the residual R defined by
R ¼ ogi

ot
� ðCx þ U cÞ

oðgi � gtÞ
ox

; ð44Þ
where the desirable incident waves are specified a priori at the location of the inflow boundary.
According to our previous study [30], the use of Eq. (40) helps to guarantee a consistent manner in solving a

due to a well-suited boundary value at the mixed cell even in the presence of a current. In particular, it only
creates the very weak reflected waves.

Based on the velocity potential in fluid, the wave elevation gi at ghost cells is given by
gi ¼
Xm

j¼1

H
2

cos k xþ k
4

� �
� xat

 �
 �
j

ð45Þ
along a vertical wavemaking boundary in 2D. With the help of Eq. (44), the principal source term eventually
becomes
ogi

ot
� ðCx þ U cÞ

ogi

ox
¼
Xm

j¼1

H j

2
xa þ ðCx þ U cÞk½ �j sin k xþ k

4

� �
� xat

 �
j

( )
ð46Þ
for the combined motions of irregular waves and a current, as it evolves in time t (where the variable (x) is
fixed). m denotes the total number of waves (obviously, the simplest is m = 1 for a target of regular waves),
and the subscript j means the jth component. Given the standard wave energy spectrum of irregular wave
trains, the desirable irregular waves can be created by linearly superimposing a series of regular waves to a
specified number of terms (m = 10, enough for our computations), as illustrated in Fig. 3, when the charac-
teristics of one basic single regular wave (the wave height H and period Ta) is specified.

Owing to a Doppler shifted frequency (kUc cosb), the absolute frequency xa can be evaluated by
xa ¼ xr þ kU c cos b or xa ¼
2p
T a

; ð47Þ
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where b is an angle of the wave orthogonal with the current streamline. In our present study, it is set to zero, as
waves propagate into a current without obliqueness.

Given the knowledge of the discrete quantity for gt (see Fig. 3), it is easy to obtain the corresponding veloc-
ity distributions at the inflow boundary. One way is that three components (ut,vt,wt) of the velocity for the
total waves can be represented by superposing linearly the steady current speed Uc onto the velocity induced
by incident waves that absorb the Doppler shifted frequency. This yields
Fig. 4.
at a ce
ut ¼ U c cos bþ
Xm

j¼1

H
2
ðxa � kU c cos bÞ cosh kðgt þ dÞf g

sinhðkdÞ cos k xþ k
4

� �
� xat

 �
 �
j

;

vt ¼ 0;

wt ¼
Xm

j¼1

H
2
ðxa � kU c cos bÞ sinh kðgt þ dÞf g

sinhðkdÞ sin k xþ k
4

� �
� xat

 �
 �
j

:

ð48Þ
Accordingly, the wavelength k that absorbs a current is derived by
k ¼ gk
2p

tanh
2pd
k

 �1
2

þ U c cos b

( )
T a; ð49Þ
which is solved iteratively, based on Newton–Raphson’s technique that can give rapid convergence, under the
period Ta and depth d specified. As a consequence, Eqs. (40) and (48) construct the basis of our external gen-
erator as wavy inflow boundary conditions for the wave–current coupling. The major mechanism is that the
effects of the steady current have been absorbed to the wavelength (see Eq. (49), related with the Doppler-
shifted linear dispersion relation) together with the velocity profiles (see Eq. (48), corresponding to full poten-
tial theory), while the combined flows are realized by superimposing a current onto waves.

We first apply our external generator for modelling of waves travelling on three different current speeds
(positive, zero, negative), which can be recognized in Fig. 4 (refer to Fig. 5 for its geometry). By observation,
the external generator did well in the case of waves following a positive current, as the positive net flux formed
by the boundary can maintain the energy balance in the NWT over a long duration simulation. But it fails to
work for waves opposing the adverse current, in case the current is assigned as a net mass transport. Some
reasons may be interpreted as the fact: the fluid leaving through the inflow boundary could drain water out
of the tank, leading to a continuous drop in the mean water level. To solve particular counter current prob-
lems, the water has to be fed into the flow domain by the outflow boundary, as done in our study [34]. In this
way, the computational domain is usually coupled with a numerical damping zone, which costs the substantial
CPU time plus the heavy memory, resulting in convergence to be extremely slow in general. Hence, a hopeful
alternative is to apply our internal generator, as described below, which creates an adverse current (see Figs.
14–16), based on the source function. A major feature is that our NWT can be made as much small as possible
(at least in length), because of the use of a breaking-type wave absorber. This further maintains the minimal
expense for computations without instability problem even for lengthy computations.

Fig. 5 demonstrates a typical example regarding wave-structure coupling problems with and without a posi-
tive current, by using the external generator. When the synthetic inflow motions fully develop and propagate
along the tank, the following waves overtop over a vertical barrier in the front of a pier, and then the waves are
strongly reflected at the seawall, as one case of the diffraction of regular and irregular waves by a barrier sitting
-0.3

-0.15

 0
 0.075
 0.15

 0  2  4  6  8

η 
(m

)

t (s)

WG: x = 1.0 (m) 

Computations with three different currents (positive, zero, negative) over grids (251 · 40) for Case 4 (regular waves): the wave train
rtain position, by using the external generator. —— Uc = 0.1 ms�1; – – – Uc = 0.0; – Æ – Uc = �0.1 ms�1.



-0.2

-0.1

 0

 0.1

 0.2

 0  5  10  15  20  25  30  35

η 
(m

)

t (s)

WG: x=3.81 (m)

-0.7

-0.35

 0
 0.15

 0.3

 0  1  2  3  4  5  6

z 
(m

)

x (m)

t = 33.5 (s) Uc = 0.0 m/s 1.0 m/s

-0.7

-0.35

 0
 0.15

 0.3

 0  1  2  3  4  5  6

z 
(m

)

x (m)

t = 33.5 (s) Uc = 0.1 m/s 1.0 m/s

Fig. 5. Following-current-wave effects over grids (251 · 40) for Case 4 (regular waves): the wave train at a certain location and the
instantaneous velocity fields. —— Uc = 0.1 ms�1; – – – Uc = 0.0.

T. Li et al. / Journal of Computational Physics 223 (2007) 865–897 877
above the bottom (see [31] for its 3D computations). From observation on this figure, the presence of the cur-
rent causes substantial changes for the water-wave dynamics, especially in the near-barrier region, character-
ized by a horizontal large-scale eddy shed from the barrier (also see Fig. 26 for the irregular waves). Closed to
the barrier, a violent overtopping jet occurs and surface waves naturally break against this structure, leading
to high turbulence induced by the breaking waves, and as a result of increase of the wave-induced loading act-
ing on the pier (due to the sea level rising). Additionally, the overall shapes in the wave trains exhibit the typ-
ical feature of nonlinearity after perturbing from its rest state.

2.6. An internal generator

In our present study, the source function f in Eq. (5) is incorporated into the continuity and momentum
equations as one type of a net driving force that creates an adverse current, as opposed to our previous study
[34]. In this sense, it can be thought of as an internal generator. Given the adverse current speed Uc, the func-
tion f is formulated as follows, based on amount of mass flux over the finite volume region specified. This
yields
f ¼ ðd þ gÞbjU �c j
lxlylz

cos b ¼ ðd þ gÞjU �c j
lxlz

cos b; ð50Þ
where (d,b) are the constant water depth and a finite width of the tank, respectively, (lx, ly, lz) represent the
size of the rectangular source region in the corresponding coordinates (x,y,z) and b is the same as that of
Eq. (47).

Note that ly = b in Eq. (50), which is one case equivalent to the uniform shape specified in the lateral direc-
tion. It is clear that this approximation is straightforward in 2D. In addition, the source strength involves the
effects of the surface elevation g at a certain location. By comparison, we found that computations look much
more efficient, when the source region covers several cells rather than one cell on a Cartesian grid (see Fig. 13).
By rule of thumb, its length (lx) should be thin (two to three cells) or less than 6% of the wavelength, while the
height (lz) is restricted to distance: from the wave trough below to water depth (d/3) above. To suppress noise
from suddenly starting at t = 0, the modified speed U �c is given by
U �c ¼ 0:5U cf1þ tanhð10pt � pÞg; ð51Þ

in which tanh(t) is smoothly varied from �1 to 1 over a specified number of wave periods.
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Now, let us observe the effects of the prescribed net driving force: the water surface above the source region
(located at x = 7.89 to 8.04 m, covering three cells in this case) responds rapidly (ranging from t = 0.1 to 0.4 s)
and arises to a certain height (see Fig. 6). Closed to the source region, an adverse current generated flows
towards two the ends of the tank, forming spatially-varying current profiles in regions of interest, because
the current is strongly coupled with incident waves. Interestingly, the mechanism of current generation is
through the rapid growth of sea level, similar to the water wave generation by underwater explosion, as gravity
is only the restoring force.

2.7. A wave absorber

In the course of modelling of wave propagation, the numerical solution is probably highly sensitive to
waves reflected from artificial boundaries, as waves propagate over distance much longer than several wave-
lengths. To minimize spurious reflection in computations, a less efficient method is to extend the computa-
tional domain until a large distance, in which some results are achieved, before the significant reflection
error propagates upstream. Additionally, well-suited boundary conditions have to be specified at open bound-
aries in order to minimize the computer resources required for modelling of an open system. Because no exact
absorbing conditions are available at open boundaries, two basic categories recommended are numerical and
physical techniques, respectively. In the following, we emphasize how to specify suitable absorbing conditions
at the outflow boundary for the confined tank (see Fig. 1), as in this case a well-designed open boundary con-
dition is essential for the semi-open NWT (for example, to effectively reduce the size of the computational
domain in length).

2.7.1. Numerical techniques

Two classes of the absorbing boundary conditions are usually applied for handling artificial boundaries.
One is based on the wave equation [10] or its zeroth approximation like the open condition [42], where only
the waves (asymptotically ideal for low frequencies) leaving the outlet boundary are described. The other relies
on the sponge layer or artificial damping zone technique (applicable to absorption of short waves), by means
of the addition of a forcing term, and as a result of reduction of oscillations in the solution near the boundary
[24]. Mathematically, it is substantially served as a function of the numerical dissipation, by incorporating the
appropriate artificial damping terms
Fig. 6.
(regula
~F d ¼ ðF x
d; F

y
d; F

z
dÞ ¼ f0; 0;�Sðx; tÞgfu; v;wgT ð52Þ
implying that only the vertical velocity is modified within the damping zone, corresponding to S(x) 6¼ 0 (see
Fig. 7). Owing to definition of one body force, this term (~F d) is added to the right-hand side of the NS equa-
tions (see Eq. (5) for creating the negative contribution against incident waves. According to the slightly dif-
ferent formulation adopted in [47], the fringe function S defined is given by
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Sðx; tÞ ¼ SmaxðtÞ F
x� xs

LDrise

� �
þ F

x� xt

LDfall

þ 1

� �
 �
ð53Þ
with the aid of the length (L) of the computational domain and two coefficients (Drise,Dfall), where Smax(t) is
the maximum strength of the fringe function and the subscripts (s, t) stand for the position of two ends (start-
ing and terminal) in the damping zone, respectively. To avoid partial reflection, S(x) is smoothly varied along
the damping zone, especially near the entering point. For this reason, F(r) is assigned by
F ðrÞ ¼
0 r 6 0;

1

1þe
1

r�1
þ1

rð Þ 0 < r < 1;

1 r P 1;

8><>: ð54Þ
as shown in Fig. 7, where the curve plotted in the damping zone (total length of about 1.3k) consists of three
parts, starting from x = 12.8 (m) to final step constant value Smax = 50.0 s�1 near the end wall (Drise = 0.6 and
Dfall = 0.1 in this case).

In fact, one often couples the sponge layer technique with a piston-like Neumann condition as the hybrid
algorithm, which is very efficient in a broader spectrum of waves [6]. Only requirement is to extend the extra
length (normally several wavelengths) at the end of a tank so that energy of outgoing waves is effectively dis-
sipated. Consequently, the performance depends heavily on the ratio of the beach length to wavelength k [5].
Note that such restriction also holds for an internal wavemaker [35], by adding a length at both ends of the
tank in general.

2.7.2. A breaking-type wave absorber

We attempt to apply a simple wave absorber, i.e. an artificial sloping ridge is equipped in the extremity of
the NWT. It can be considered as one type of physical techniques related with the physical model (see [26]
with a perforated metal sheet or [12] for a similar device). In our study, the smooth impermeable structure
with constant slope (1/6 or less) is connected to a region with constant water depth, while the top of the
structure lies just slightly above the still water level (see Fig. 9, for example). One possible explanation is
that the wave energy can be effectively dissipated by breakwaters without the need of adding an extra
length, before waves reach its extremity. Accordingly, a simple local boundary condition at the outflow
boundary can yield a well-posed solution, especially the wave reflection can be restricted to the minimal
level.

A typical example, Case 3 (see Table 1), is selected for testing the performance of a breaking-type wave
absorber in 2D. By visualizing the typical velocity fields (see Figs. 14–16), the high speed flows are created,
while an expanding jet overflows along the crest of the absorber, leading to localized high turbulence. Conse-
quently, dissipation of energy due to waves breaking is the dominant process in the proximity of this absorber,
and as a result of a loss of wave energy in breaking waves. For this situation, the reflected waves are expected
to be small, which can be convinced in Fig. 8: the general trend of the wave profiles (averaged over 10 periods)
and the mean velocity profiles (by interpolation at x = 7.8 m) follows closely that of experiments. It reveals
that considerable turbulence is rapidly damped out, under the dynamic SGS model. For this reason, our
NWT can be made small, which helps to reduce the CPU time.
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Based on our analysis, the high computational efficiency is achieved, by using a breaking-type wave absor-
ber. This speculation can be further confirmed, by comparison of two types of traditional approaches applied
at the outflow boundary: a homogeneous Neumann boundary and the open condition (see Eq. (37). Definitely,
such comparison is still of considerable interest for nonlinear water-wave propagation problems, especially
when fully turbulent flows are caused by waves breaking.

2.7.3. Comparison of two classes of wave absorbers

As expected, a more interesting reference case is concerned with the homogeneous Neumann boundary (i.e.
ow
ox ¼ 0 and u = 0, implying a free-slip rigid wall), since there exists a perfect reflecting wall artificially placed at
the outlet, where the return flow (undertow) occurs. In contrast of the Neumann boundary, the weakly reflect-
ing condition (see Eq. (37) allows radiating long waves passing through the outlet. Owing to possible gener-
ation of the fully (or partially) reflected waves from the boundary, a long domain is useful for both
approaches, which should cover a damping zone. Fig. 9 displays reflection and absorption efficiency in terms
of the wave train, instantaneous velocity fields and velocity profiles (throughout this paper, the symbol C in
the velocity fields drawn stands for the linear shallow wave celerity, unless otherwise stated), when compared
with measurements available.

By observation, the perturbations caused by the wall in the early stages are negligible almost everywhere.
Probably, there is no serious problem with the simple treatment at the outlet, when modeling of a solitary
wave or dam-break flow [23]. After that, the degree of wave reflection varies with the Neumann boundary
to breaking-type wave absorber, being strong for the former and practically negligible or weak for the latter
(see Fig. 9). This is one example that has been turned out to be very efficient for wave absorption, by using the
breaking-type wave absorber (also see Fig. 8). The wave trains, for instance, exhibit typically nonlinear fea-
tures: high crests and smaller troughs. The fair agreement between predicted and measured results gives partial
confirmation: the perfect energy dissipation on a beach with a shorter scale, implying only mildly reflecting.

With the Neumann boundary condition, however, the results are contaminated due to occurrence of appre-
ciable and successive wave reflection, leading to badly-behaved solution. One reason for that is because the
incident waves propagate against the return flow to occur under troughs or interact with the reflected waves
from the vertical wall or both. Additionally, introduction of the artificial damping zone cannot effectively dis-
sipate the energy of outgoing waves, although the waves progressively lose some energy in this area (see Fig. 9,
where the damping zone starts from x = 16.0 m). Probably, the waves may be entirely absorbed but less effi-
cient, provided that the length of damping zone is sufficient (the several wavelength or more). The same con-
sequence also holds with the open condition, as in this case an impulsive velocity is generated at the outflow
boundary, resulting in the artificially reflected waves there. Consequently, high absorption efficiency of our
physical absorbing device and its cost are highlighted by comparison with the two reference simulations men-
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tioned. An additional benefit is that it can apply to various wave conditions without the requirement in
knowledge of incident waves, except for extra cost adding one simple geometry (a 2D mountain ridge) to
our solver.

3. Test cases

To validate the accuracy of our design wave–current generators, five test cases (see Table 1) under consid-
eration are applied, which involve three types of different applications of interest:

� the fully coupled wave–current motions in the open channel over constant water depth (labelled Case 1 to
Case 3), for which measurements are available [26,27,12];
� overtopping of violent waves over a vertical barrier, responsible for impact of waves onto the structure,

leading to strong reflection at a seawall (referred to as Case 4);
� and overtopping of waves over a seadike, characterized by various physical phenomena in water of varying

depth (named Case 5).



When simulating waves following or opposing a turbulent current (Case 1 to Case 3), various theory mod-
els are applied and there has been significant progress in this area. Based on the linear wave approximation,
for example, Huang and Mei [22] proposed an analytical boundary-layer method for Case 1 plus a little in
Case 2. For the latter, more detailed study was achieved by Groeneweg and Battjes [21], according to the gen-
eralized Lagrangian mean formulation. Both also involve computations of waves on a negative current, while
Fredsøe et al. [12] borrowed the Reynolds-averaged Navier–Stokes (RANS) equations with a k–x model for
solution of the near-bottom motions in Case 3. But the limited values are given in the turbulent regions near
the free surface (such as the instantaneous velocity fields), especially the lack of the wave train (importantly, as
such assessment helps to observe whether mass conservation holds for a large number of wave periods). Addi-
tionally, no one attempts to address grid resolution, which is essential on uncertainty analysis, including the
study of convergence issues.

In our present study, all five test cases are demonstrated with our own solver. Definitely, this is very valu-
able in assessing our design wave–current generators. As illustrated below, we first concern the open channel
flow and then study waves on beaches. It is shown that our solver captures most of intrinsic features that
would arise in the wave–current interaction, especially it provides more detailed quantitative analysis of the
velocity fields plus waves. For example, the surface profiles averaged over 10 periods are given (see Fig. 11)
and the mean horizontal velocity profiles at a single station are easily obtained by interpolation at
x = 7.0 m (see Fig. 12). The computations are performed over a cut-cell grid, which are identical to physical
conditions in experiments, except at the bed boundary, where the rough bed in experiments is against the
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smooth one in simulations. Two Cartesian grid levels with varying cell sizes are employed for the grid refine-
ment study. The results are represented in terms of the instantaneous velocity fields in 2D (see Fig. 1(b)) and
the time history of the surface elevation g (m) at the selected wave gauge (WG), as these variables are directly
given, by solving the Navier–Stokes equations with the free surface.

3.1. Wave–current coupling in water of constant depth

As incident waves propagate into the fully developed shear flow, the adverse current is strongly coupled
with the waves, forming the opposing waves (see Figs. 14–16). Very encouragingly, our results give the com-
prehensive comparison for waves on three types of the current states varying with the signed number for Case
1 to Case 3. Definitely, they also provide the physical insight for the interaction of waves with a current. On
these figures, a major feature is essentially that waves on an adverse current are shorter than waves on a posi-
tive one, as the current compresses the wavelength somehow (see Fig. 10), which is consistent with the point
drawn in Eq. (49) for the given values of Ta and d. An expected phenomenon is that the phase-averaged sur-
face profiles display typically nonlinear features, especially in the opposing waves. For the latter, the dynamics
of waves can vary significantly with current-induced wave breaking, in case the waves are blocked by the
strong opposing currents [7,8], where the change in the gross topology will undergo the processes of merging
and breakup. For some particular positive current problems (Case 1 to Case 2), the attenuation of wave
heights relative to pure waves is obvious, as the waves are travelling on the current.

Interestingly, the profiles of the longitudinal velocity (u) may fit the sequence near the free surface (see
Fig. 12, where the corresponding data are not available in measurements), which display a notable reduction
in following waves, as observed in the physical model available (see Fig. 9). According to our computations,
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the predicted velocity diminishes continuously to zero towards two ends of the curve, whether or not there
exists a current (also see Fig. 8). One possible explanation is the presence of a transition zone, due to the effects
of the surface boundary layer both at the seabed and free surface. For situations where the velocity profiles are
predicted well, for example, in the case of following waves, simulation of the wave height tends to be high
accurate (see Fig. 11): the shape of the wave profiles may be resolved adequately, especially an excellent agree-
ment between theory and experiment is achieved with increased mesh refinements. In this sense, the discrep-
ancy attributed to the grid effects is relatively small for variable of the wave height (in regular waves). This
behavior also holds in the case of the opposing waves but for the velocity profiles the discrepancy is apparent
in the proximity of the free surface, where the waves experience an increase in speed towards the free surface
(also see Fig. 13). The reason for that is probably attributed the turbulent structures in this area, where the
turbulent properties are highly anisotropic [49]. On the other hand, the wave boundary layer is likely to extend
up into the current-induced logarithmic layer. A local adaptive mesh adjacent to interfaces is attractive for
capture of the fully developed turbulent boundary layer. In the near-bottom region, the different local features
are partly due to different seabed conditions regardless of resolution that is employed.
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This is our first results in the study of waves opposing or following a turbulent current, based on our
internal or external generator, respectively. In the case of the former, the strength of the source distributed
spatially is massless, which allows the flow to pass through the source region, represented with a small box
in our test case. For example, the height (lz) of this box and its length (lx) for Case 1 are 0.093 and 0.09 m,
respectively, covered 11 and 3 cells (i.e. the finite-volume source) on the given grid. By using the point
source (only one cell in height and length), it is found that the results are not much sensitive to variation
of the size in the source region (see Fig. 13), whereas significant errors are produced in some transient
time, which seems less efficient.

3.2. Waves on beaches

Our solver describes well waves following (or opposing) a turbulent current over constant water depth for
Case 1 to Case 4. The reminder is that we would address the aspect in 2D and 3D for waves on beaches (Case
5), which is a more challenging case, because of the impressive natural phenomenon. We first investigate irreg-
ular waves in 2D and then discuss the 3D effects in regular waves. The results for waves following a positive
current are summarized below, based on our external generator.
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By visualizing the wave-induced motions in regions of interest with several stages (see Fig. 18), it is found
that flows become highly turbulent under waves breaking, often subjected to identifiable jet-splash cycles,
when waves overtop over the seadike. After that, the breaking waves transform into a turbulent bore, char-
acterized by a steep turbulence front and an area of recirculating flow. In the wave front, the particle velocity
exceeds the speed limit underneath the region of flows, leading to the rapid increase in high turbulent kinetic
energy (t = 32.4 s, for example). Interestingly, there exists two possible sources of turbulence generation for
waves on beaches. One is the initial instability that leads to breaking, because of continuous increase of the
wave steepness (t = 4.5 s); the other is the proceeding of the downwash, which also induces waves breaking
(t = 33.4 s). Definitely, the presence of a current modifies wave characteristics, especially in regions subjected
to strong turbulent flows, where a large hydraulic jump is created nearby at x = 4.0 m (t = 32.2 s), under cer-
tain circumstance of irregular waves alone.

In contrast to this, the positive current stretches the wavelength, leading to reduction in the steepness of
waves. Consequently, the wave–current interaction tends to be less severe, probably similar to computa-
tions in deep water waves, characterized by a thick sheet of water on the beach (defined as the so-called
swash), in which the nonlinearity is weak. Such effects tend to be considerable in general, as a current
increases.
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On the other hand, the wave pattern develops rapidly after the transient phase and highly sharp-crest waves
(i.e. one typical feature of irregular waves) are well captured (see Fig. 17), which always occur in real sea. As
expected, the phase shift is the result of the Doppler effects due to the presence of a current. Interestingly, the
high turbulence activity occurs at phase mostly within the surf zone, subjected to rapid deformation of the free
surface, where the eddy viscosity mt dominates over the molecular viscosity m (see Fig. 17 for varying with mt).

3.3. 3D effects

To observe the 3D effects, the source of the wavemaker in 2D (ranging from the bottom to the free surface)
is uniformly distributed along the inlet section extended to the width of 1.0 m. Geometrically, this shape con-
structs a cubic tank of edge length 6.3 · 1.0 · 1.0 m3 separately in the longitudinal, lateral and vertical direc-
tions (see Fig. 1(a)). For the present 3D seadike problem, any longitudinal profile is identical with the 2D case
(see Fig. 1(b), referred to as the symmetry plane of y = 0, for convenience). Based on the usual CFD validation
procedure, the convergence performance is first discussed for regular waves alone, and then computations with
different grids are conducted for investigation of the asymptotic grid convergence. Accordingly, an interesting
comparison between 3D and 2D cases is described. Finally, the asymmetry of flows at the cross-sections (i.e.
the y–z plane) is detected for various horizontal positions in the presence of a current or not. Summarily, our
results demonstrate that the gravity-wave breaking is essentially a three-dimensional process only in the surf
zone (where the flow shape loses its symmetry and becomes fully 3D), as surface waves move up the slope,
resulting in a 3D convective instability. In this sense, the wave propagations differ substantially from strong
internal waves that may cause intense shear in 3D [3].

3.3.1. Convergence history

By examining the L2 norm of the residuals (Res), Resu ¼ f
PN

m¼1ðun
i;j;k � un�1

i;j;k Þ
2
=Ng

1
2 with the total number

of cells N and u = (U,V,W,P), Fig. 19 exhibits a set of the convergence history in iterations for the momen-
tum equations (U,V,W) in the (x,y,z)-directions plus the pressure (P). In this case, computations are con-
ducted over one single mesh (205 · 21 · 40) with varying cell sizes, except in the y-direction, where the grid
spacing is uniform.

As expected, the fast convergence rate about the pressure is achieved due to the computationally efficient
algorithm developed in our solver. This is divided into two regimes according to the trend of curves: first to
decay nearly exponentially with a relatively short time and then turns to the flat until a certain time level spec-
ified by a user (see Fig. 19). Based on the fact that solution of the pressure-Poisson equation is essentially the
most time-consuming part for any incompressible flow problems, therefore, our solve exhibits the well overall
performance in computations. Furthermore, mass conservation ensures that our simulations are stable even
during lengthy computations. This is because errors are eliminated exponentially with the iterative number,
in case the errors in mass are mainly caused by the residuals from the continuity equation (in fact, these
are principally composed of high-frequency error components [36]). According to a decoupled approach, it
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is seen that the residuals of the velocities (U,V,W) almost follow the similar trend (see Fig. 19), whereas some
local peaks over these three curves are clearly magnified, probably corresponding to the steep gradients of the
velocity in waves breaking.

3.3.2. Grid refinement study

Three different meshes are applied for study of the effects of increasing grid density on waves, as illustrated
in Figs. 20 and 21 for the wave train and velocity fields.

First, all of the simulations in 3D start from rest as one kind of the most general situations in the NWT,
which obviously differ from the previous studies [32,13]: for the former, the steady-state solution on the 3D
coarse grid is assigned as an initial guess for the fine solution; on the other hand, the calculated results in
2D are interpolated onto the 3D domain for the latter. Hence, no white noise (or an initial disturbance) is
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imposed on our three-dimensional turbulent computation, until the first breaking event occurs, when the ini-
tial development of the free surface is driven by our external generator, characterized by the capture of the
transient in waves (see Fig. 20). By observation, a common knowledge for the wave pattern is that more useful
information in the motions can be represented with increased mesh refinement, especially close to the surf
zone, where the flows are essentially in 3D (see Fig. 20). Secondly, an excellent agreement with measurements
available is achieved (whereas there exists some discrepancy at one farther position, x = 3.81 m, from the
inlet), as a mesh increases. This is the expected behavior, as physically a higher resolution allows the numerical
schemes to dissipate on a broader wavenumber range. Finally, the grid resolution is sensitive for the velocity
fields (see Fig. 21), which probably describe the obliquely descending eddies (t = 11.5 s) entraining sediments.
Such coherent turbulent structures descend from the surface towards the bottom. Interestingly, this phenom-
enon causes asymmetry of the flow in the lateral direction, closely related with the longitudinal vortices
(defined by xx ¼ ow

oy � ov
oz). For our 3D problems, therefore, the conclusion of the mesh refinements is almost

identical with the case in 2D, as stated in our study [30] for the comments.

3.3.3. Comparison between 2D and 3D

On the assumption that comparison is made on the central plane (y = 0), Fig. 22 provides an illustrative
observation for this one in terms of the wave trains selected. One feeling is that the results in 3D remain very
similar to those in 2D within the non-breaking region (WG: x = 2.02 m) but far from satisfactory at the posi-
tion adjacent to the wave-breaking region (WG: x = 3.81 m). It is clear that these results directly give reliable
evidence: waves in breaking are a rapidly dissipative process in the localized region. Hence, the use of a 3D
solver coupled with SGS models helps to capture the wave-induced small-scale turbulent flows, in case the
configuration in 2D becomes unstable due to waves breaking. In particular, 3D gives more promising results,
as compared to 2D (see Fig. 22), where the development of waves reaches a fairly steady pattern after the tran-
sient from rest. Of course, the shape of waves exhibits some temporal fluctuations, which may be indicative of
the generation of high-order harmonics in computations, resulting from a slight asymmetry for the surface
profiles.

Before breaking, a particular situation exhibits that the wave dynamics is still in 2D, as the pre-breaking
simulations are almost identical but quite different after breaking. In 3D, the breaking wave-induced second-
ary circulation usually emerges as counter-rotating vortex (pairs) in confined channels (see Fig. 21). It moves
with a strong central flow, occupying the most of the cross-section, especially in increasing the mesh. But the
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predicted secondary current is rather weak, based on the results in 2D and 3D at the same position (see
Fig. 22: x = 2.02 m), indicating that small disturbances in 3D are not sufficient to affect the two-dimensional
results (although the results in 3D look better). This is consistent with the study in [21]
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there is no obvious sign for the strong coupling between the transverse and longitudinal dynamics, due to the
weak solution of the lateral motions (see Fig. 23). Consequently, the effect of the longitudinal scale on the hor-
izontal velocity is dominant over that of the cross-sectional part. As a highly turbulent bore generated prop-
agates along the beach, the obliquely descending eddies, found by Nadaoka et al. [41] in experiments, can also
be described by the velocity vectors in the plane (see Fig. 24: t = 12.0 s). Such turbulent structures in 3D
behave a pair of counter-rotating vortices, forming the three-dimensional vorticity fields but decay with time
or destroy. Interestingly, the influence of walls may not be only the three-dimensional forcing from which the
instability develops [19], as for waves on beaches high turbulence in 3D can be induced by the breaking waves.

Physically, the near-wall motions are substantially suppressed by the sidewall boundary-layer thickness,
while varying with the addition of even the small current (see Fig. 24). Sufficiently far from the walls (perfectly
in the center of plane, y = 0), the significant influence of the sidewall does not detected. Anyway, this effects
could be further reduced by use of a wider flume, especially the width of a tank becomes infinite. Note that the
flows become three-dimensional (although weak) at toe of the dike (see Fig. 23: x = 1.0 m), due to the longi-
tudinal modulation of the bottom topography. In fact, only within the breaking region, the motions are sig-
nificantly three-dimensional (see Fig. 23: x = 4.5 m), where the surface profile shows pronounced local lateral
variability, and as a result of advection of a larger-scale three-dimensional feature from the swash zone.

4. Conclusions

By design of the different wave–current generators applied to the NWT, we study interactions of breaking
waves with currents over a structure, based on a dynamic Smagorinsky model. Computations are conducted
on Cartesian cut-cell grids with our developed Navier–Stokes solver. By superimposing a steady current onto
waves, our external generator technique provides well-defined wavy inflow conditions, which have been
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addressed in the study of waves following a current. For waves propagating against strong currents, the inter-
nal source function introduced is used as one type of a net driving force for creation of the desirable opposing
current, forming our internal generator.

Our solver has be extensively illustrated with five test cases studied. These are of particular values in dis-
tinctly different applications, especially in the area of nonlinear shallow water-wave propagation problems,
significantly characterized by overtopping of waves. Given finite amplitude surface water waves, we concern
a direct comparison of the numerical simulation with the experimental flows varying with different currents
(positive, zero, negative). By validation, the results in 2D or 3D agree well with measurements available in
terms of the wave or horizontal velocity profiles. Hopefully, our study can provide valuable base for the anal-
ysis of wave–current-structure coupling, induced by regular and irregular waves. The major conclusions are
drawn as follows:

� The grid dependency is still a crucial aspect for our VOF-based solver. Near the free surface, for example,
the minimum grid space (in the vertical direction) varies with case by case. When validated the results, visu-
alization of the wave pattern plus the instantaneous velocity fields are both important, based on our
experience.
� By using a breaking-type wave absorber, the reflected waves can be effectively dissipated without loss of the

flow characteristics of interest, which differs substantially from various theoretical schemes proposed for
absorbing waves reflected at the outflow boundary. In this sense, our computations are without the insta-
bility problems even for a long duration. This is very useful for situations involving some actual cases, as
the lengthy computations are necessary, especially such information helps to confirm whether the global
mass and energy are conserved.
� Under the test for waves against the adverse current, the dynamics of flows could more dramatically vary,

as in this case the waves shorten the wavelength, relative to waves superimposed on the positive current.
Owing to existence of a transition zone (related with two different roughness values caused by the actual
bed and free surface), our results reveal that the flow is increased in the outer layer after a drop in the log-
arithmic description of the velocity profiles, vanishing at the free surface. This is true for waves following a
current but in the situation of opposing waves it appears that growth of the mean horizontal velocity is
underestimated, as compared to measurements available.
� Owing to the lack of the spanwise convective rolls, the physical dissipation for the two-dimensional flow is

substantially limited in the case of waves breaking. On the other hand, wave dynamics remains two-dimen-
sional in regions of non-breaking waves but the dominant motions in the surf zone are obviously a three-
dimensional convective instability that leads to spanwise convective rolls. It is clear that the disturbance
caused by 3D enhances the strength of this instability at the expense of waves breaking.

Ongoing and future work will incorporate the particular adverse current case for the study of wave
blocking.
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Appendix A.

A.1. Effects of a dynamic SGS model on MILES in breakwaters

More recently, irrotational flow models are still widely applied for wave–current interactions, in case the
effects of viscosity and vorticity are weak, as studied in [8,55] with the Boussinesq-type equations. Under
breaking waves, however, the flows become complex unsteady flows. To confront the scale-complexity prob-
lem inherent to turbulent flows, the technique of LES has emerged as an alternative to the RANS approach
[14]. In the context of this theory, MILES probably provides a promising practical tool due to without any
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further modelling: it lets the numerical viscosity dampen the numerical simulation, by introducing high-reso-
lution locally monotone algorithms [15]. More specifically, an elementary approach in MILES is to discretize
the convective terms, based on the schemes like Jameson, MUSCL and ENO [9,16]. But a hybrid approach
(called MILES + SGS in our study), constructed by MILES that is coupled with a dynamic SGS model, is
essential for accurate estimation of periodic breaking water-wave propagation problems, especially for the
lengthy computations, as the SGS model incorporates a model bringing a turbulent viscosity. The discussion
regarding the issues is given as follows.
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Flows behave as localized high turbulence in waves breaking, as given with two typical case studies related
to coastal structures (see Figs. 25 and 26), leading to the rapid increase in high turbulent kinetic energy. But
the energy of waves accumulated at the high wavenumbers can be effectively dissipated by turbulence, when
using a dynamic SGS model. Otherwise, the spurious currents are probably generated only with MILES, and
as a result of the damage to true solution at the same grid. Hopefully, this provides one example: MILES can-
not resolve LES properly [46], in case the principal mechanism of turbulence diffusion is through the action of
viscous on the breaking waves.

When the flows become self-sustaining turbulence, the wave-induced motions evolve into the following two
distinct parts: (i) In the early stage, the viscous effects may be regarded as negligible, and the results look very
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close except for a small phase shift (also see [30] with our shock-capturing Euler solver), as in this case the
leading-order truncation error (growing with increasing wavenumber) acts as the intrinsic SGS model that dis-
sipates the energy of waves. It means that our MILES approaches capture well growth rates of the initial per-
turbation, caused in waves breaking. Consequently, the total contribution of the turbulence increase can be
almost balanced under the numerical dissipation mechanism. (ii) Nevertheless, different features are apparent
in waves continuously breaking, and viscous diffusion plays an important role in the flow regime eventually
dominated by turbulence. After the initiation of progressive waves breaking, the performance of MILES is
far from satisfactory in terms of the surface profiles (as a function of time), especially for the flowfield. A
major reason is that the numerical viscosity in MILES cannot restrain the increase of energy fluctuated on
a broad range of length and time scales, partly due to insufficient grid resolution or the frequent occurrence
of small-scale structures or both. On the contrary, the hybird scheme maintains a transfer of energy in the
nearly equilibrium state of turbulence field, by modelling of small-scale turbulent fluctuations, responsible
for the kinetic energy dissipation. MILES + SGS is probably a more viable approach for breaking water-wave
problems, therefore, based on the fact that SGS models provide an additional physics mechanism, by which
dissipation of a rapid build-up of kinetic energy at high wavenumber can occur [16]. This behavior is partic-
ularly important in waves breaking.
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